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▪ D-T fusion is the most accessible fusion reaction for energy production

▪ Fusion fuel is in the state of a plasma with a temperature of at least 10keV 

(corresponding to 100 million degrees)

▪ Confinement quality 𝒏𝝉𝑬 must exceed 1020m−3s for fusion power to 

exceed power losses (break-even)

Fusion energy - Recap

Use magnetic field to restrict movement 

of charged particles in the perpendicular

direction and increase 𝜏𝐸 → magnetic 

confinement fusion (MCF)
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▪ The Magnetohydrodynamic (MHD) description of a plasma

▪ MHD equilibrium configurations of interest for magnetic confinement 

fusion

▪ MHD stability and operational limits

▪ Go to https://moodle.epfl.ch/course/view.php?id=14996 for links to 

notes and exercises

General introduction to the MHD 
lectures (L2 to L4)

https://moodle.epfl.ch/course/view.php?id=14996


Plasma II

L2: The 
Magnetohydrodynamic 
(MHD) description of 
the plasma
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Outline

▪ MHD equations

▪ General application

• Validity

• Conservation properties

▪ General formulation of the ideal MHD equilibrium

▪ The ideal MHD equilibrium in 1D configurations

See also

▪ EPFL MOOC Plasma physics: Introduction #3a,e,f
• https://learning.edx.org/course/course-v1:EPFLx+PlasmaIntroductionX+3T2016/home

▪ Wesson, Tokamaks, Chapters 2.18-2.21, 3.1-3.8

▪ Fitzpatrick, Plasma Physics – An introduction, Chapter 4

The Magnetohydrodynamic (MHD) 
description of the plasma
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▪ The physical foundation of MHD

1. From single-particle description to distribution function

2. The moment approach

3. Single fluid description of the plasma

+ Maxwell’s equations

Description of a plasma
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▪ Start: (microscopic) single-particle description with an equation of motion for 

each plasma particle under the influence of the Lorentz force

• Exact description of the plasma!

▪ However, the plasma density is typically 1020m-3 in magnetically confined 

fusion devices and the plasma volume is 100m3

▪ 1022 particles, hence, 1022 individual equations of motion are simply 

computationally too expensive to solve!

• Precise state cannot be measured in practice 

From single particle description to 
distribution function

𝑚
𝑑 ҧ𝑣 ҧ𝑥, 𝑡

𝑑𝑡
= ത𝐹L ҧ𝑥, 𝑡 = 𝑞 ത𝐸 ҧ𝑥, 𝑡 + ҧ𝑣 ҧ𝑥, 𝑡 × ത𝐵 ҧ𝑥, 𝑡
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▪ Consider a distribution function 

𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡

which provides the number of particles of the plasma species 𝑠 occupying on 

average at the time 𝑡 the 6D phase space volume 

𝑑𝑥𝑑𝑦𝑑𝑧  𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

centred at the 3D position ҧ𝑥 and the 3D velocity ҧ𝑣

• The usual normalisation of 𝑓𝑠 is

and

From single particle description to 
distribution function (cont.)

Particle density: 𝑛𝑠 ҧ𝑥, 𝑡 = න𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡 𝑑𝑣𝑥𝑑𝑣𝑦𝑑𝑣𝑧

Number of particles: 𝑁𝑠 𝑡 = න𝑛𝑠 ҧ𝑥 , 𝑡 𝑑𝑥𝑑𝑦𝑑𝑧
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▪ Applying conservation of particles (Liouville’s theorem)

From single particle description to 
distribution function (cont.)

Boltzmann/Vlasov kinetic description of a plasma

𝑑𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡

𝑑𝑡
= 0

▪ If 𝑛𝜆𝐷
3 ≫ 1, local electric fields are shielded and ത𝐸 (and ത𝐵) correspond to 

macroscopic fields → collisionless Vlasov equation
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▪ The kinetic description of a system (e.g. fluid, plasma) 𝑓𝑆 ҧ𝑥, ҧ𝑣, 𝑡 still 

does not have a simple meaning in terms of the usual macroscopic 

quantities 

Apply mathematical operations to the kinetic Boltzmann/Vlasov

equation to reduce the dimensionality and extract 
useful/intuitive/measurable quantities (fluid variables and equations)

MHD: the moment approach
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▪ Velocity space moments of the distribution function 𝑓𝑆 ҧ𝑥, ҧ𝑣, 𝑡

- N=0 moment  ➔ particle density 𝑛𝑠 ҧ𝑥, 𝑡 (normalization of the 
distribution function 𝑓𝑆 ҧ𝑥, ҧ𝑣, 𝑡 )

-  N=1 moment: ഥ𝒗   ➔  flow velocity ത𝑉𝑠 ҧ𝑥, 𝑡

-  N=2 moment: 𝒎𝒔ഥ𝒗ഥ𝒗   ➔ stress tensor ധ𝑃𝑠 ҧ𝑥, 𝑡 (pressure tensor, if calculated 
in the rest frame*)

-  N=3 moment: 
𝟏

𝟐
𝒎𝒔𝒗

𝟐ഥ𝒗 ➔ energy flux density ത𝑄𝑠 ҧ𝑥, 𝑡 (heat flux density, if 

calculated in rest frame*) 

Moments of the distribution function 
yield fluid variables

*Replace ഥ𝒗 with ഥ𝒗 − ത𝑉𝑠

1

∞−׬
∞
𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡 𝑑 ҧ𝑣

න

−∞

∞

ത𝑉𝑁 𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡 𝑑 ҧ𝑣 =
1

𝑛𝑠 ҧ𝑥, 𝑡
න

−∞

∞

ത𝑉𝑁 𝑓𝑠 ҧ𝑥, ҧ𝑣, 𝑡 𝑑 ҧ𝑣Nth order moment:
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▪ Kinetic “Boltzmann” equation

Moments of the kinetic equation 
yield fluid equations

∇ ∙ ҧ𝑣𝑓𝑠

𝜕𝑓𝑠
𝜕𝑡

+ ҧ𝑣 ∙ ∇𝑓𝑠 + ത𝑎 ∙ ∇𝑣𝑓𝑠 = 𝐶𝑠 𝑓

∇𝑣 ∙ ത𝑎𝑓𝑠

N=0 moment  ➔ continuity equation
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▪ Kinetic “Boltzmann” equation

• N=0 moment  ➔ continuity equation

• N=1 moment  ➔ momentum conservation equation

• N=2 moment  ➔ energy conservation equation

Moments of the kinetic equation 
yield fluid equations

𝜕 𝑚𝑠𝑛𝑠 ത𝑉𝑠
𝜕𝑡

+ ∇ ∙ ധ𝑃𝑠 − 𝑞𝑠𝑛𝑠 ത𝐸 + ത𝑉𝑠 × 𝐵 = ത𝐹𝑠

𝜕

𝜕𝑡

3

2
𝑝𝑠 +

1

2
𝑚𝑠𝑛𝑠𝑉𝑠

2 + ∇ ∙ ത𝑄𝑠 − 𝑞𝑠𝑛𝑠 ത𝐸 ∙ ത𝑉𝑠 = 𝑊𝑠 + ത𝑉𝑠 ∙ ത𝐹𝑠

With 𝑠 = e, i
and ത𝐹e = − ത𝐹i

∇ ∙ ҧ𝑣𝑓𝑠

𝜕𝑓𝑠
𝜕𝑡

+ ҧ𝑣 ∙ ∇𝑓𝑠 + ത𝑎 ∙ ∇𝑣𝑓𝑠 = 𝐶𝑠 𝑓

∇𝑣 ∙ ത𝑎𝑓𝑠

𝜕𝑛𝑠
𝜕𝑡

+ ∇ ∙ 𝑛𝑠 ത𝑉𝑠 = 0
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▪ Fluid equations require a “Fluid closure”  ➔ assume only small deviations from 

a Maxwellian distribution

➢ Closures yield expressions for ത𝐹, ധ𝜋𝑒, ധ𝜋𝑖, 𝑊𝑒, 𝑊𝑖 , ത𝑞𝑒, ത𝑞𝑖 that depend on 𝑛, 

𝑇𝑒 and 𝑇𝑖
≫ 1 : un-magnetised plasma

• Distinguish
𝜌𝑒/𝑖

𝜆MFP,𝑒/𝑖

≪ 1 : magnetised plasmas

- Gyro radius

- Mean free path

Fluid closure

𝜆MFP,𝑒/𝑖 ∝
𝑇𝑒,𝑖
2

𝑛

𝜌e/𝑖 ∝
𝑇𝑒/𝑖

Τ1 2

𝐵 𝜌𝑒/𝑖
𝜆MFP,𝑒/𝑖

∝
𝑛

𝐵𝑇𝑒/𝑖
Τ3 2
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▪ Simplify equations by neglecting terms that are small for a particular 

problem in physics, e.g. a collisional (𝜆MFP,e/i ≪ 𝐿), highly magnetised 

(𝜌e/i ≪ 𝜆MFP,e/i), quasi-neutral (𝜆D ≪ 𝐿) plasma

• Characteristic length 𝐿

▪ MHD ordering: 𝑉~𝑣𝑡ℎ
➢ MHD motion is sufficiently fast that “transport” effects such as viscosity and 

thermal conductivity are too slow to play a role

➢ The only collisional effects are resistivity, thermal force and electron-ion 
collisional energy exchange 

Order terms in equation by size and 
neglect “small” terms

𝜌𝑒

𝐿
,  
𝜌𝑖
𝐿
≪

𝜌𝑒

𝜆MFP,e
,  

𝜌𝑖
𝜆MFP,i

,
𝑚𝑒

𝑚𝑖
≪ 1
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▪ Electrons

▪ Ions

(2-fluid) MHD equations

𝜕𝑛𝑒
𝜕𝑡

+ ∇ ∙ 𝑛ത𝑉𝑒 = 0

𝑚𝑒𝑛
𝜕ത𝑉𝑒
𝜕𝑡

+𝑚𝑒𝑛 ത𝑉𝑒 ∙ ∇ ത𝑉𝑒 + ∇𝑝𝑒 + 𝑒𝑛 ത𝐸 + ത𝑉𝑠 × 𝐵 = ത𝐹𝑈 + ത𝐹𝑇

3

2

𝜕𝑝𝑒
𝜕𝑡

+
3

2
ത𝑉𝑒 ∙ ∇ 𝑝𝑒 +

5

2
𝑝𝑒∇ ∙ ത𝑉𝑒 = 𝑆𝑖𝑒

𝜕𝑛𝑒
𝜕𝑡

+ ∇ ∙ 𝑛 ത𝑉𝑖 = 0

𝑚𝑖𝑛
𝜕ത𝑉𝑖
𝜕𝑡

+𝑚𝑖𝑛 ത𝑉𝑖 ∙ ∇ ത𝑉𝑖 + ∇𝑝𝑖 − 𝑒𝑍𝑖𝑛 ത𝐸 + ത𝑉𝑖 × 𝐵 = −ത𝐹𝑈 − ത𝐹𝑇

3

2

𝜕𝑝𝑖
𝜕𝑡

+
3

2
ത𝑉𝑖 ∙ ∇ 𝑝𝑖 +

5

2
𝑝𝑖∇ ∙ ത𝑉𝑖 = −𝑆𝑖𝑒
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▪ Define single fluid variables (linear combinations of ion “𝑖” and electron “𝑒” 

quantities) and use 𝑛𝑖 ≈ 𝑛𝑒 = 𝑛 and Τ𝑚𝑒 𝑚𝑖 ≪ 1

• Mass density:

• Charge density:

• Center-of-mass velocity:

• Current density:

Linear combinations of ion and electron 
variables yield single fluid variables

ҧ𝑗 = 𝑒𝑛 ത𝑉𝑖 − ത𝑉𝑒 ≈ 𝑒𝑛 ത𝑉 − ത𝑉𝑒

𝜌M = 𝑛𝑚𝑖 + 𝑛𝑚𝑒 ≈ 𝑛𝑚𝑖

ത𝑉 =
1

𝜌𝑀
𝑛𝑚𝑖

ത𝑉𝑖 + 𝑛𝑚𝑒
ത𝑉𝑒 ≈ ത𝑉𝑖

𝜌 = 𝑒 𝑛𝑖 − 𝑛𝑒 ≈ 0
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▪ Continuity equation

▪ Equation of motion (with 𝑝 = 𝑝𝑖 + 𝑝𝑒) 

▪ Ohm’s law

Linear combinations of 2-fluid 
equations yield the MHD equations

𝑑𝑛

𝑑𝑡
+ 𝑛∇ ∙ ത𝑉 = 0

𝑚𝑖𝑛
𝑑 ത𝑉

𝑑𝑡
+ ∇𝑝 − ҧ𝑗 × ത𝐵 = 0

ത𝐸 + ത𝑉 × ത𝐵 =
1

𝑒𝑛
ҧ𝑗 × ത𝐵 − ∇𝑝𝑒 + 𝜂 ҧ𝑗 = 𝟎

- perfect conductivity ➔ ideal MHD
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▪ Energy evolution equation → adiabatic equation of state

▪ Equipartition of energy (𝑇𝑖 = 𝑇𝑒)

Linear combinations of 2-fluid
equations yield the MHD equations (cont.)

3

2

𝑑𝑝

𝑑𝑡
+
5

2
𝑝∇ ∙ ത𝑉 = 0

𝑑

𝑑𝑡

𝑝

𝑛 Τ5 3
= 0

𝑆𝑖𝑒 = 0

⟹

Adiabatic index 
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▪ Maxwell’s equations describe the electro-magnetic and electro-static 

part of the MHD model

• Gauss’s law:

• Gauss’s law for magnetism:

• Faraday’s law:

• Ampère’s law:

Maxwell’s equations in the MHD limit

∇ ∙ ത𝐸 = 0

∇ × ത𝐸 = −
𝜕 ത𝐵

𝜕𝑡

∇ × ത𝐵 = 𝜇0 ҧ𝑗 +
1

𝑐2
𝜕𝐸

𝜕𝑡

Neglect displacement currents (𝑉 ≪ 𝑐)

∇ ∙ ത𝐵 = 0
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Essential elements of the MHD model of the plasma:

▪ Single fluid description ➔

• Considers the global plasma behaviour

• Plasma inertia is provided by the ions and the fluid velocity is the net ion flow

• Movement of electrons relative to the ions constitute a plasma current

▪ Maxwell’s equations ➔

• Describe the electro-magnetic (EM) and electro-static (ES) components of 
the model

• Link the sources of the EM field (charge and current densities) to the fields in 
the plasma

Introduction to the MHD model: 
Summary
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Outline

▪ MHD equations

▪ General application

• Validity

• Conservation properties

▪ General formulation of the ideal MHD equilibrium

▪ 1D configurations

The Magnetohydrodynamic (MHD) 
description of the plasma
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▪ Key assumptions

- Small Lamour radius 
𝜌𝑖
𝐿
≪ 1

- Sufficient collisions

𝑚𝑖

𝑚𝑒

𝜆𝑖
𝐿
≪ 1

- Sufficient low resistivity

𝜌𝑖
𝐿

2 𝑚𝑒

𝑚𝑖

𝐿

𝜆𝑖
≪ 1

Validity of ideal MHD

Collisions
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▪ The ideal MHD description of the plasma has many conservation 

properties

- Conservation of mass (particles)  𝜌

- Conservation of momentum 𝜌 ത𝑉

- Conservation of energy  Τ𝜌𝑉2 2 + Τ𝐵2 2𝜇0 + Τ𝑝 𝛾 − 1

- Conservation of the magnetic flux  Φ = ׬
𝑆

ത𝐵 ∙ 𝑑 ҧ𝑆

Conservation properties of the ideal 
MHD model

𝜕 something

𝜕𝑡
+ ∇ ∙ flux of something = 0
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▪ Conservation of the magnetic flux Φ = 𝑆׬
ത𝐵 ∙ 𝑑 ҧ𝑆 ➔ show d/dt=0

Conservation of the magnetic flux
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▪ Conservation of the magnetic flux Φ = 𝑆׬
ത𝐵 ∙ 𝑑 ҧ𝑆 ➔ find when d/dt=0!

Conservation of the magnetic flux

▪ Magnetic flux through every surface moving with the plasma is constant

➔ Frozen-in magnetic field in the absence of plasma resistivity!

𝑑Φ

𝑑𝑡
= −න

𝐶

ത𝐸 ∙ 𝑑 ҧ𝑙 + න
𝑆

ത𝐵 ∙ ത𝑉 × 𝑑 ҧ𝑙 = −න
𝐶

ത𝐸 + ത𝑉 × ത𝐵 ∙ 𝑑 ҧ𝑙

= 0Ideal Ohm’s law
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▪ The MHD model of the plasma can be used to:

• Find magnetic field configurations capable of confining a plasma in a defined 
volume for sufficiently long time scales → equilibrium

• Analyse the linear stability properties of such a magnetic equilibrium: find if 
the equilibrium is stable or unstable to (small) perturbations

• Analyse the non-linear development of macroscopic and microscopic 
instabilities and their ultimate consequences on the equilibrium itself

Conclusions: when do we use the 
MHD model?
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Outline

▪ MHD equations

▪ General application

• Validity

• Conservation properties

▪ General formulation of the ideal MHD equilibrium

▪ 1D configurations

The Magnetohydrodynamic (MHD) 
description of the plasma
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▪ Finding stable equilibria is one of the essential applications of the ideal

MHD model

• Eulerian definition of the equilibrium: Τ𝜕 𝜕𝑡 = 0

▪ The simplest, yet very useful, stable MHD equilibria are the static 
equilibria, i.e. ഥ𝑽 = 𝟎

• Dynamic MHD equilibria exist, but are more difficult to describe

Definition of the (static) MHD 
equilibrium
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𝑚𝑖𝑛
𝜕 ത𝑉 ҧ𝑥, 𝑡

𝜕𝑡
+ ത𝑉 ҧ𝑥, 𝑡 ∇ ത𝑉 ҧ𝑥, 𝑡 = ҧ𝑗 ҧ𝑥, 𝑡 × ത𝐵 ҧ𝑥, 𝑡 − ∇𝑝 ҧ𝑥, 𝑡

▪ Use ideal MHD equations and set Τ𝜕 𝜕𝑡 = 0 and ത𝑉 = 0

Static ideal MHD equilibrium 
equations

- Continuity:

- Momentum:

- Ampère’s law:

- Gauss’s law:

- Ideal Ohm’s law:

𝜕𝑛 ҧ𝑥, 𝑡

𝜕𝑡
+ ∇ ∙ 𝑛 ҧ𝑥, 𝑡 ഥ𝑉 ҧ𝑥, 𝑡 = 0

∇ × ത𝐵 ҧ𝑥, 𝑡 = 𝜇0 ҧ𝑗 ҧ𝑥, 𝑡

∇ ∙ ത𝐵 ҧ𝑥, 𝑡 = 0

ത𝐸 ҧ𝑥, 𝑡 + ത𝑉 ҧ𝑥, 𝑡 × ത𝐵 ҧ𝑥, 𝑡 = 0
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▪ Investigate momentum or force balance equation

Static MHD equilibrium: isobaric 
surfaces

ҧ𝑗 × ത𝐵 = ∇𝑝

➢Current and magnetic field lines lie on isobaric surfaces!
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Isobaric surface: surface of constant pressure 𝑝 ҧ𝑥, 𝑡

Static MHD equilibrium: flux 
surfaces

▪ ҧ𝑗, ത𝐵 ⊥ ∇𝑝 ➔ 𝑝 does not change along ҧ𝑗 nor ത𝐵 ➔ ഥ𝑗 ҧ𝑥, 𝑡 and 
ത𝐵 ҧ𝑥, 𝑡 lie on isobaric surfaces

▪ ∇ ത𝐵 = 0 implies that isobaric surfaces enclose constant magnetic flux 

Φ = 𝑓 𝑝 ➔ isobaric flux-surfaces

Flux surface
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▪ Flux tube: a cylindrical volume embedded in the plasma, its sides are 

defined by magnetic field lines

Definition of flux tubes

▪ Frozen-in magnetic field in ideal 

MHD: Τ𝑑Φ 𝑑𝑡 = 0

For any plasma displacement 

the integrity of the flux-tubes is 

maintained

▪ Ideal MHD: magnetic field topology is maintained

- Field lines cannot break and “reconnect”

Φ 𝑝
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MHD equilibrium: ҧ𝑗 × ത𝐵 force balances the ∇𝑝-force

Static MHD equilibrium

▪ Balance between the gradient in the plasma + magnetic field 

pressure and the tension of the magnetic field lines

- Tension of the magnetic field lines ∝ Τ𝐵2 𝜇0𝑅𝐶 : restoring force when 

magnetic field lines are bent with a curvature radius 𝑅𝐶

1

𝜇0
𝛻 × ത𝐵 × ത𝐵 − 𝛻𝑝 = 0

⟹ 𝛻𝑝 + 𝛻⊥
𝐵2

2𝜇0
−
𝐵2

𝜇0
Ƹ𝑒𝐵 ∙ 𝛻 Ƹ𝑒𝐵 = 0

magnetic field 

pressure

tension of magnetic 

field lines

ҧ𝑗 × ത𝐵 − ∇𝑝 = 0

- Use Ampère’s law
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▪ Two classes of MHD equilibria: field lines are open or closed inside the 

plasma volume being studied

Examples

MHD equilibrium: field lines

Source: Wikipedia 

Creative Commons

- Closed magnetic field lines in a 

toroidal device: the tokamak

- Open magnetic field lines in a linear 

cylindrical device: the magnetic 

bottle (or magnetic mirror)
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▪ A toroidal device (torus) is a cylinder with its ends folded-up

Closed field lines in a toroidal 
device

▪ Torus: two preferential 

directions defining possible 

symmetry axis:

- The toroidal direction: the 

longitudinal axis of the original

cylinder

- The poloidal direction: defines 

the plane perpendicular to the 

longitudinal axis of the original

cylinder

▪ Magnetic field lines can be closed in a toroidal device
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▪ Poincaré theorem (also sometimes known as the hairy ball theorem): 

the only smooth 2D surface on which field lines can be covered by a 

non-vanishing vector field is a torus

MHD equilibrium: field lines & 
Poincaré theorem
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Flux surfaces must have the 

topology of a torus for the ҧ𝑗 × ത𝐵
force to balance the plasma 

pressure everywhere!

Vector field vanishes!
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▪ Rotational transform : the average value of d after one full transit in 

the toroidal direction

Closed field lines: rotational 
transform

- Example: if the field line closes itself after m toroidal transit and n of poloidal 

transits, then =2n/m

➢ A perturbation can resonate with this natural periodicity of the magnetic 

equilibrium when 𝜄 = 2𝜋𝑧 with 𝑧 ∈ ℚ

= 2𝜋
𝑛

𝑚
𝑛,𝑚 ∈ 𝒩

𝜄 = lim
𝑙⟶∞

1

𝑙
෍

𝑘=1

𝑙

𝑑𝜃𝑘
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▪ Rotational transform (r): characterises flux surfaces of MHD equilibria 

with a single number and helps the study of MHD stability

- Mostly used for non-axisymmetric 3D magnetic configurations ➔
stellarators

▪ Related to safety factor q(r)=2/(r)

- Mostly used for axisymmetric 2D magnetic configurations ➔ tokamaks

Closed field lines: rotational 
transform
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▪ Static ideal MHD equilibrium: ത𝑉 ҧ𝑥, 𝑡 = 0

▪ The ҧ𝑗 × ത𝐵 force must balance the outward-directed p-force

▪ Isobaric flux-surfaces: surfaces of constant pressure and magnetic 
flux, field lines tangent to them

▪ Closed field lines: characterized by the rotational transform

Static ideal MHD equilibrium: 
summary
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Outline

▪ MHD equations

▪ General application

• Validity

• Conservation properties

▪ General formulation of the ideal MHD equilibrium

▪ The ideal MHD equilibrium in 1D configurations

• The Harris neutral sheet in the Earth’s magneto-tail

• One of the earliest fusion experiments: the Z-pinch

• One of the earliest fusion experiments: the -pinch

The Magnetohydrodynamic (MHD) 
description of the plasma
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▪ Harris neutral sheet: on the night-side of the Earth’s magneto-sphere

• Probed in recent years by the ESA Cluster and NASA Themis missions

The Harris neutral sheet: a 1D MHD 
equilibrium

• Cross-field flow of current 

due to the solar wind: 

the direction of the 

magnetic field reverses as 

the mid-plane is crossed

• The Harris neutral sheet 

corresponds to the 

reconnection layer, where 

the magnetic field reversal 

occurs
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▪ Harris neutral sheet

• Symmetries:

➔ Τ𝜕 𝜕𝑥 = 0 and Τ𝜕 𝜕𝑦 = 0

The Harris neutral sheet: a 1D MHD 
equilibrium

▪ The sum of the magnetic and the plasma pressure is constant in the 

Harris neutral sheet

ത𝐵 = 𝐵𝑥 𝑧 , 0, 0

ҧ𝑗 = 0, 𝑗𝑦 𝑧 , 0

ҧ𝑗 × ത𝐵 − ∇𝑝 = 0 → −𝐵𝑥 𝑧 𝑗𝑦 𝑧 −
𝑑𝑝 𝑧

𝑑𝑧
= 0

∇ × ത𝐵 = 𝜇0 ҧ𝑗 →
𝑑𝐵𝑥 𝑧

𝑑𝑧
= 𝜇0 𝑗𝑦 𝑧

𝑑

𝑑𝑧

𝐵𝑥
2 𝑧

2𝜇0
+ 𝑝 𝑧 = 0

Ampère

Force balance
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▪ General solution for the equilibrium of the Harris neutral sheet

The Harris neutral sheet: a 1D MHD 
equilibrium

- Derived by E.G. Harris in 1962

- Confirmed by measurements 

in the Earth’s magneto-tail

𝑗𝑦 𝑧 = 𝑗0sech
2
𝑧

ℎ

𝑝 𝑧 =
𝐵0
2

2𝜇0
sech2

𝑧

ℎ
𝐵𝑥 𝑧 = 𝐵0 tanh Τ𝑧 ℎ
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▪ Magnetic pinch: 1D cylindrical (linear) configuration

▪ All equilibrium quantities depend only on the radial coordinate r ➔

use cylindrical coordinates (er, e, ez) with /z=0 and /=0

▪ Three varieties of magnetic pinches exist:

• the Z-pinch

• the -pinch

• the screw-pinch

The magnetic pinch: a 1D MHD 
equilibrium 
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▪ Z-pinch: configuration that achieves plasma 

confinement using a poloidal magnetic field 

B(r) and a ‘toroidal’ current jz(r)

The Z-pinch: a 1D MHD 
equilibrium

Current jz(r)Field B(r)

ത𝐵 = 0, 𝐵𝜃 𝑟 , 0

ҧ𝑗 = 0,0, 𝑗𝑧 𝑟

➢See exercise 1 for Z-pinch equilibrium
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▪ Z-pinch equilibrium

• The outward net force provided by the radial gradient of the plasma kinetic + 
magnetic pressure is balanced by the inward tension due to the curvature of 
the magnetic field lines being wrapped over the surface of the Z-pinch

The Z-pinch: a 1D MHD 
equilibrium

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝜃
2 𝑟

2𝜇0
+

𝐵𝜃
2 𝑟

𝜇0𝑟
= 0

- Tension of the magnetic field lines B2/(0r): restoring force when magnetic field lines 

are bent with a curvature radius r

Current jz(r)Field B(r)
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▪ -pinch: configuration that achieves plasma 

confinement using a toroidal magnetic field 

Bz(r) and a poloidal current j(r)

The -pinch: a 1D MHD 
equilibrium

Current j(r)Field Bz(r)

ത𝐵 = 0,0, 𝐵𝑧 𝑟

ҧ𝑗 = 0, 𝑗𝜃 𝑟 , 0

Ampere’s law:                        𝜇0 ҧ𝑗 = ∇ × ത𝐵 ⟹ 𝜇0𝑗𝜃 𝑟 = −
𝑑𝐵𝑧 𝑟

𝑑𝑟

Ideal MHD force balance    ҧ𝑗 × ത𝐵 − ∇𝑝 = 0 ⟹ 𝑗𝜃 𝑟 𝐵𝑧 𝑟 −
𝑑𝑝 𝑟

𝑑𝑟
= 0

Substitute 𝑗𝜃 ⟹
1

𝜇0

𝑑𝐵𝑧 𝑟

𝑑𝑟
𝐵𝑧 𝑟 +

𝑑𝑝 𝑟

𝑑𝑟
= 0

⇔
𝑑

𝑑𝑟

𝐵𝑧
2 𝑟

2𝜇0
+ 𝑝 𝑟 = 0 ⟹

𝐵𝑧
2 𝑟

2𝜇0
+ 𝑝 𝑟 = 𝑐𝑜𝑛𝑠𝑡.=

𝐵𝑧
2 𝑎

2𝜇0
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▪ -pinch equilibrium

- Plasma kinetic pressure is balanced by 
magnetic field pressure

The -pinch: a 1D MHD 
equilibrium

radius of the 
plasma column

𝐵𝑧
2 𝑟

2𝜇0
+ 𝑝 𝑟 =

𝐵𝑧
2 𝑎

2𝜇0

- Analytic solution obtained by prescribing 

the toroidal field

𝐵𝑧 𝑟 =

𝐵0 2 + tanh
2𝑟 − 𝑎

ℎ
for 𝑟 < 𝑎

𝐵𝑧 𝑟 = 𝑎
𝑎

𝑟
for 𝑎 < 𝑟 < 𝑏

𝑝 𝑟 =
𝐵𝑧
2 𝑎 − 𝐵𝑧

2 𝑟

2𝜇0

𝑗𝜃 𝑟 = −
𝐵0
ℎ𝜇0

sech2
2𝑟 − 𝑎

ℎ
𝑝 𝑟 =

𝐵0
2 𝑎

2𝜇0
2 + tanh

𝑎

ℎ

2

− 2 + tanh
2𝑟 − 𝑎

ℎ

2

with

and

position of the 
limiter wall
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▪ Screw-pinch: combines the Z-pinch and the 

-pinch, also known as the linear tokamak

The screw-pinch: a 1D MHD 
equilibrium

𝑑

𝑑𝑟
𝑝 +

𝐵𝑧
2 + 𝐵𝜃

2

2𝜇0
+
𝐵𝜃
2

𝜇0𝑟
= 0

ത𝐵 = 0, 𝐵𝜃 𝑟 , 𝐵𝑧 𝑟

ҧ𝑗 = 0, 𝑗𝜃 𝑟 , 𝑗𝑧 𝑟

➢ See exercise 2 for screw-pinch equilibrium
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▪ Harris sheet {𝑗𝑦 𝑧 , 𝐵𝑥 𝑧 } ➔ magnetic pressure 

▪ Z-pinch {𝑗𝑧 𝑟 , 𝐵𝜃 𝑟 }, ➔ magnetic pressure + magnetic field lines tension 

▪ -pinch {𝑗𝜃 𝑟 , 𝐵𝑧 𝑟 } ➔ magnetic pressure

▪ Screw-pinch {𝑗𝜃 𝑟 , 𝑗𝑧 𝑟 , 𝐵𝜃 𝑟 , 𝐵𝑧 𝑟 } ➔ combines Z-pinch and -pinch

Applications of the 1D MHD 
equilibrium: summary

𝑑

𝑑𝑧
𝑝 𝑧 +

𝐵𝑥
2 𝑧

2𝜇0
= 0

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝜃
2 𝑟

2𝜇0
+
𝐵𝜃
2 𝑟

𝜇0𝑟
= 0

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝑧
2 𝑟

2𝜇0
= 0

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝑧
2 𝑟 + 𝐵𝜃

2 𝑟

2𝜇0
+
𝐵𝜃
2 𝑟

𝜇0𝑟
= 0
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▪ MHD equations: concept, derivation, (limits of validity), applications

▪ General MHD equilibrium: 

• Based on ideal MHD force balance (Ampere’s law links ҧ𝑗 and ത𝐵)

• Field lines wind around a torus

• Field lines form flux surfaces characterised by a rotational transform 

▪ MHD equilibrium: several examples of one-dimensional equilibria 

(require two symmetries, e.g. magnetic pinches with /z=0 and /=0)

Re-cap: The Magnetohydrodynamic
(MHD) description of the plasma 
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