

Plasma II (PHYS-424)

Holger Reimerdes

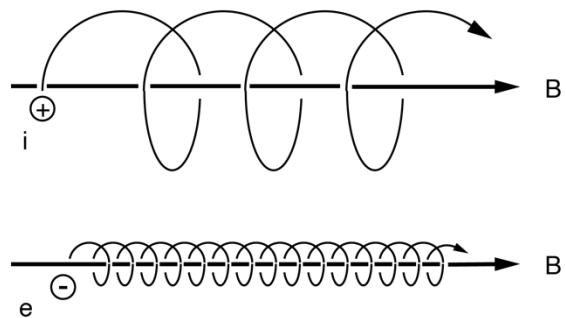
**Based on lecture notes by
Prof. A. Fasoli, Prof. I. Fumagalli,
Dr. A. Howling and Dr. D. Testa**

Spring Semester 2025

Fusion energy - Recap

- **D-T fusion** is the most accessible fusion reaction for energy production
- Fusion fuel is in the state of a **plasma** with a temperature of at least 10keV (corresponding to 100 million degrees)
- **Confinement quality** $n\tau_E$ must exceed $10^{20}\text{m}^{-3}\text{s}$ for fusion power to exceed power losses (break-even)

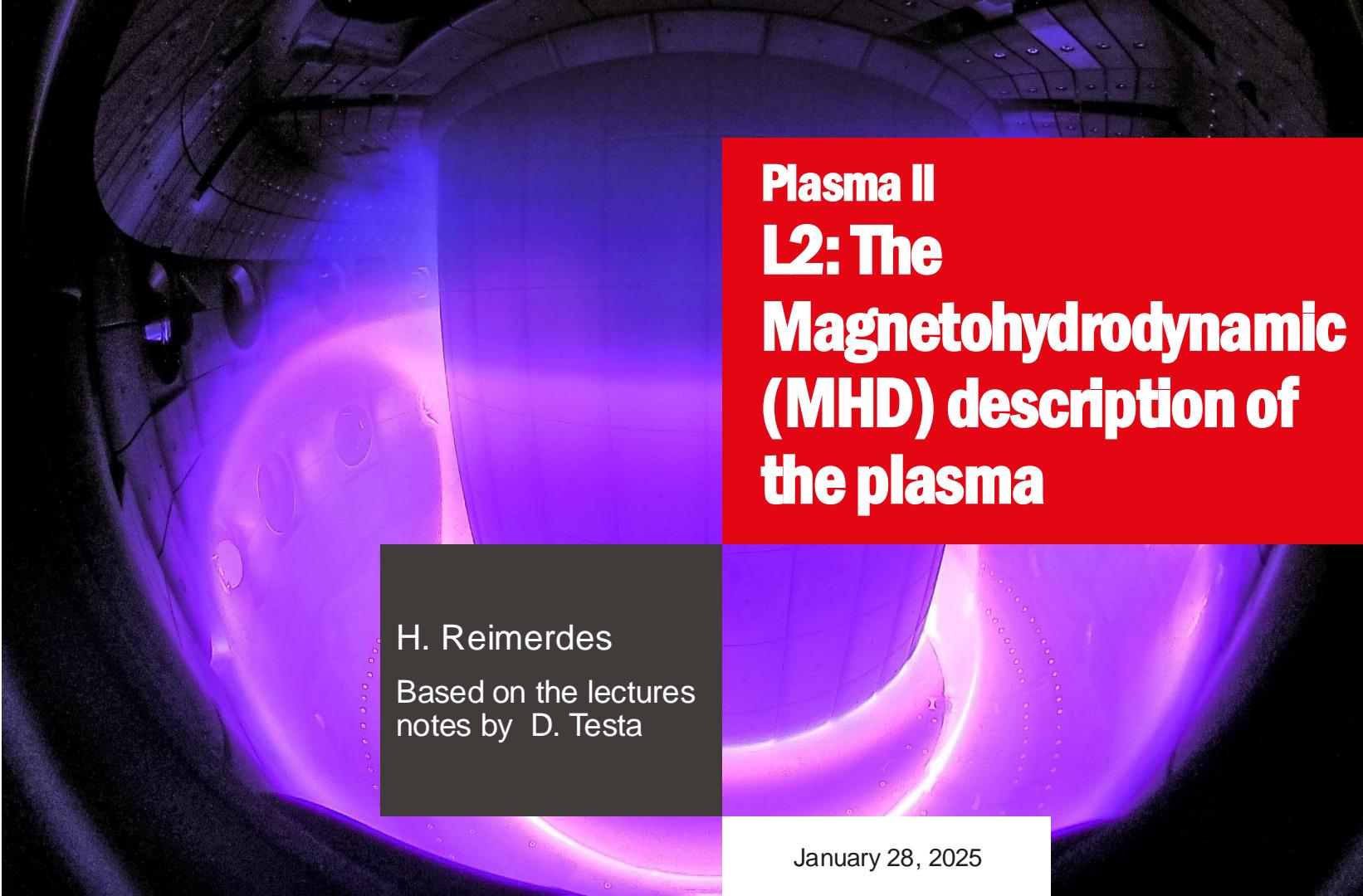
Use **magnetic field** to restrict movement of charged particles in the *perpendicular* direction and increase $\tau_E \rightarrow$ **magnetic confinement fusion (MCF)**



General introduction to the MHD lectures (L2 to L4)

- The Magnetohydrodynamic (MHD) description of a plasma
- MHD equilibrium configurations of interest for magnetic confinement fusion
- MHD stability and operational limits

- Go to <https://moodle.epfl.ch/course/view.php?id=14996> for links to notes and exercises



Plasma II

L2: The

Magnetohydrodynamic (MHD) description of the plasma

H. Reimerdes

Based on the lectures
notes by D. Testa

January 28, 2025

The Magnetohydrodynamic (MHD) description of the plasma

Outline

- MHD equations
- General application
 - Validity
 - Conservation properties
- General formulation of the ideal MHD equilibrium
- The ideal MHD equilibrium in 1D configurations

See also

- EPFL MOOC *Plasma physics: Introduction* #3a,e,f
 - <https://learning.edx.org/course/course-v1:EPFLx+PlasmaIntroductionX+3T2016/home>
- Wesson, *Tokamaks*, Chapters 2.18-2.21, 3.1-3.8
- Fitzpatrick, *Plasma Physics – An introduction*, Chapter 4

- The physical foundation of MHD
 - 1. From single-particle description to distribution function
 - 2. The moment approach
 - 3. Single fluid description of the plasma
- +
- Maxwell's equations

From single particle description to distribution function

- **Start:** (microscopic) single-particle description with an equation of motion for each plasma particle under the influence of the Lorentz force

$$m \frac{d\bar{v}(\bar{x}, t)}{dt} = \bar{F}_L(\bar{x}, t) = q[\bar{E}(\bar{x}, t) + \bar{v}(\bar{x}, t) \times \bar{B}(\bar{x}, t)]$$

- Exact description of the plasma!
- However, the plasma density is typically 10^{20} m^{-3} in magnetically confined fusion devices and the plasma volume is 100 m^3

- 10^{22} particles, hence, 10^{22} individual equations of motion are simply computationally too expensive to solve!
 - Precise state cannot be measured in practice

From single particle description to distribution function (cont.)

- Consider a *distribution function*

$$f_s(\bar{x}, \bar{v}, t)$$

which provides the number of particles of the plasma species s occupying on average at the time t the 6D *phase space volume*

$$dxdydz \times dv_x dv_y dv_z$$

centred at the 3D position \bar{x} and the 3D velocity \bar{v}

- The usual normalisation of f_s is

Particle density: $n_s(\bar{x}, t) = \int f_s(\bar{x}, \bar{v}, t) dv_x dv_y dv_z$

and

Number of particles: $N_s(t) = \int n_s(\bar{x}, t) dxdydz$

From single particle description to distribution function (cont.)

- Applying conservation of particles

$$\frac{df_s(\bar{x}, \bar{v}, t)}{dt} = 0 \quad (\text{Liouville's theorem})$$

Boltzmann/Vlasov kinetic description of a plasma

- If $n\lambda_D^3 \gg 1$, local electric fields are shielded and \bar{E} (and \bar{B}) correspond to macroscopic fields \rightarrow collisionless Vlasov equation

- The *kinetic description* of a system (e.g. fluid, plasma) $f_S(\bar{x}, \bar{v}, t)$ still does not have a simple meaning in terms of the usual macroscopic quantities

Apply mathematical operations to the kinetic Boltzmann/Vlasov equation to reduce the dimensionality and extract useful/intuitive/measurable quantities (fluid variables and equations)

Moments of the distribution function yield fluid variables

- Velocity space moments of the distribution function $f_s(\bar{x}, \bar{v}, t)$

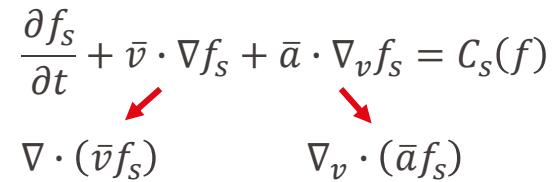
N^{th} order moment:
$$\frac{1}{\int_{-\infty}^{\infty} f_s(\bar{x}, \bar{v}, t) d\bar{v}} \int_{-\infty}^{\infty} \bar{V}^N f_s(\bar{x}, \bar{v}, t) d\bar{v} = \frac{1}{n_s(\bar{x}, t)} \int_{-\infty}^{\infty} \bar{V}^N f_s(\bar{x}, \bar{v}, t) d\bar{v}$$

- $N=0$ moment \rightarrow **particle density** $n_s(\bar{x}, t)$ (normalization of the distribution function $f_s(\bar{x}, \bar{v}, t)$)
- $N=1$ moment: \bar{v} \rightarrow **flow velocity** $\bar{V}_s(\bar{x}, t)$
- $N=2$ moment: $m_s \bar{v} \bar{v}$ \rightarrow **stress tensor** $\bar{P}_s(\bar{x}, t)$ (pressure tensor, if calculated in the rest frame*)
- $N=3$ moment: $\frac{1}{2} m_s v^2 \bar{v}$ \rightarrow **energy flux density** $\bar{Q}_s(\bar{x}, t)$ (heat flux density, if calculated in rest frame*)

*Replace \bar{v} with $\bar{v} - \bar{V}_s$

Moments of the kinetic equation yield fluid equations

- Kinetic “Boltzmann” equation

$$\frac{\partial f_s}{\partial t} + \bar{v} \cdot \nabla f_s + \bar{a} \cdot \nabla_v f_s = C_s(f)$$


The diagram shows the kinetic equation $\frac{\partial f_s}{\partial t} + \bar{v} \cdot \nabla f_s + \bar{a} \cdot \nabla_v f_s = C_s(f)$. Two red arrows point from the terms $\bar{v} \cdot \nabla f_s$ and $\bar{a} \cdot \nabla_v f_s$ to the labels $\nabla \cdot (\bar{v} f_s)$ and $\nabla_v \cdot (\bar{a} f_s)$ respectively, indicating that these terms represent the divergence of the velocity vector and the divergence of the velocity vector multiplied by the distribution function f_s .

$N=0$ moment \rightarrow continuity equation

Moments of the kinetic equation yield fluid equations

- Kinetic “Boltzmann” equation

$$\frac{\partial f_s}{\partial t} + \bar{v} \cdot \nabla f_s + \bar{a} \cdot \nabla_v f_s = C_s(f)$$

 $\nabla \cdot (\bar{v} f_s)$
 $\nabla_v \cdot (\bar{a} f_s)$

- $N=0$ moment \rightarrow continuity equation

$$\frac{\partial n_s}{\partial t} + \nabla \cdot (n_s \bar{V}_s) = 0$$

- $N=1$ moment \rightarrow momentum conservation equation

$$\frac{\partial (m_s n_s \bar{V}_s)}{\partial t} + \nabla \cdot \bar{P}_s - q_s n_s (\bar{E} + \bar{V}_s \times \bar{B}) = \bar{F}_s$$

- $N=2$ moment \rightarrow energy conservation equation

$$\frac{\partial}{\partial t} \left(\frac{3}{2} p_s + \frac{1}{2} m_s n_s V_s^2 \right) + \nabla \cdot \bar{Q}_s - q_s n_s \bar{E} \cdot \bar{V}_s = W_s + \bar{V}_s \cdot \bar{F}_s$$

With $s = e, i$
and $\bar{F}_e = -\bar{F}_i$

- Fluid equations require a “Fluid closure” → assume only small deviations from a Maxwellian distribution
- Closures yield expressions for \bar{F} , $\bar{\pi}_e$, $\bar{\pi}_i$, W_e , W_i , \bar{q}_e , \bar{q}_i that depend on n , T_e and T_i

- Distinguish $\frac{\rho_{e/i}}{\lambda_{\text{MFP},e/i}}$

$\left[\begin{array}{ll} \gg 1 : & \text{un-magnetised plasma} \\ \ll 1 : & \text{magnetised plasmas} \end{array} \right]$

- Gyro radius

$$\rho_{e/i} \propto \frac{T_{e/i}^{1/2}}{B}$$

- Mean free path

$$\lambda_{\text{MFP},e/i} \propto \frac{T_{e,i}^2}{n}$$

$$\frac{\rho_{e/i}}{\lambda_{\text{MFP},e/i}} \propto \frac{n}{B T_{e/i}^{3/2}}$$

Order terms in equation by size and neglect “small” terms

- Simplify equations by neglecting terms that are small for a particular problem in physics, e.g. a collisional ($\lambda_{\text{MFP},e/i} \ll L$), highly magnetised ($\rho_{e/i} \ll \lambda_{\text{MFP},e/i}$), quasi-neutral ($\lambda_D \ll L$) plasma

$$\frac{\rho_e}{L}, \frac{\rho_i}{L} \ll \frac{\rho_e}{\lambda_{\text{MFP},e}}, \frac{\rho_i}{\lambda_{\text{MFP},i}}, \frac{m_e}{m_i} \ll 1$$

- Characteristic length L
- MHD ordering: $V \sim v_{th}$
 - MHD motion is sufficiently fast that “transport” effects such as viscosity and thermal conductivity are too slow to play a role
 - The only collisional effects are resistivity, thermal force and electron-ion collisional energy exchange

■ Electrons

$$\frac{\partial n_e}{\partial t} + \nabla \cdot (n \bar{V}_e) = 0$$

$$m_e n \frac{\partial \bar{V}_e}{\partial t} + m_e n (\bar{V}_e \cdot \nabla) \bar{V}_e + \nabla p_e + e n (\bar{E} + \bar{V}_s \times B) = \bar{F}_U + \bar{F}_T$$

$$\frac{3}{2} \frac{\partial p_e}{\partial t} + \frac{3}{2} (\bar{V}_e \cdot \nabla) p_e + \frac{5}{2} p_e \nabla \cdot \bar{V}_e = S_{ie}$$

■ Ions

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n \bar{V}_i) = 0$$

$$m_i n \frac{\partial \bar{V}_i}{\partial t} + m_i n (\bar{V}_i \cdot \nabla) \bar{V}_i + \nabla p_i - e Z_i n (\bar{E} + \bar{V}_i \times B) = -\bar{F}_U - \bar{F}_T$$

$$\frac{3}{2} \frac{\partial p_i}{\partial t} + \frac{3}{2} (\bar{V}_i \cdot \nabla) p_i + \frac{5}{2} p_i \nabla \cdot \bar{V}_i = -S_{ie}$$

Linear combinations of ion and electron variables yield single fluid variables

- Define **single fluid variables** (linear combinations of ion “ i ” and electron “ e ” quantities) and use $n_i \approx n_e = n$ and $m_e/m_i \ll 1$

- Mass density:

$$\rho_M = nm_i + \cancel{nm_e} \approx nm_i$$

- Charge density:

$$\rho = e(n_i - n_e) \approx 0$$

- Center-of-mass velocity:

$$\bar{V} = \frac{1}{\rho_M} (nm_i \bar{V}_i + \cancel{nm_e \bar{V}_e}) \approx \bar{V}_i$$

- Current density:

$$\bar{J} = en(\bar{V}_i - \bar{V}_e) \approx en(\bar{V} - \bar{V}_e)$$

Linear combinations of 2-fluid equations yield the MHD equations

- Continuity equation

$$\frac{dn}{dt} + n \nabla \cdot \bar{V} = 0$$

- Equation of motion (with $p = p_i + p_e$)

$$m_i n \frac{d\bar{V}}{dt} + \nabla p - \bar{J} \times \bar{B} = 0$$

- Ohm's law - perfect conductivity \rightarrow ideal MHD

$$\bar{E} + \bar{V} \times \bar{B} = \frac{1}{en} (\bar{J} \times \bar{B} - \nabla p_e) + \eta \bar{J} = \mathbf{0}$$

Linear combinations of 2-fluid equations yield the MHD equations (cont.)

- Energy evolution equation \rightarrow adiabatic equation of state

$$\frac{3}{2} \frac{dp}{dt} + \frac{5}{2} p \nabla \cdot \bar{V} = 0 \quad \Rightarrow \quad \frac{d}{dt} \left(\frac{p}{n^{5/3}} \right) = 0$$

- Equipartition of energy ($T_i = T_e$)

Adiabatic index γ

$$S_{ie} = 0$$

- **Maxwell's equations** describe the electro-magnetic and electro-static part of the MHD model

- Gauss's law:

$$\nabla \cdot \bar{E} = 0$$

- Gauss's law for magnetism:

$$\nabla \cdot \bar{B} = 0$$

- Faraday's law:

$$\nabla \times \bar{E} = - \frac{\partial \bar{B}}{\partial t}$$

- Ampère's law:

$$\nabla \times \bar{B} = \mu_0 \bar{J} + \frac{1}{c^2} \frac{\partial \bar{E}}{\partial t}$$

Neglect displacement currents ($V \ll c$)

Introduction to the MHD model: Summary

Essential elements of the MHD model of the plasma:

- **Single fluid description →**

- Considers the global plasma behaviour
- Plasma inertia is provided by the ions and the fluid velocity is the net ion flow
- Movement of electrons relative to the ions constitute a plasma current

- **Maxwell's equations →**

- Describe the electro-magnetic (EM) and electro-static (ES) components of the model
- Link the sources of the EM field (charge and current densities) to the fields in the plasma

The Magnetohydrodynamic (MHD) description of the plasma

Outline

- MHD equations
- **General application**
 - Validity
 - Conservation properties
- General formulation of the ideal MHD equilibrium
- 1D configurations

Validity of ideal MHD

- Key assumptions

- Small Lamour radius

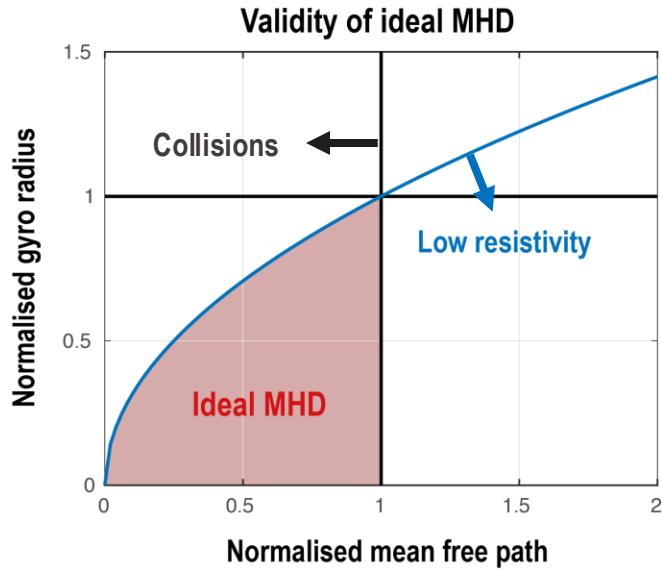
$$\frac{\rho_i}{L} \ll 1$$

- Sufficient collisions

$$\sqrt{\frac{m_i}{m_e} \frac{\lambda_i}{L}} \ll 1$$

- Sufficient low resistivity

$$\left(\frac{\rho_i}{L}\right)^2 \sqrt{\frac{m_e}{m_i} \frac{L}{\lambda_i}} \ll 1$$



Conservation properties of the ideal MHD model

- The ideal MHD description of the plasma has many **conservation properties**

$$\frac{\partial(\text{something})}{\partial t} + \nabla \cdot (\text{flux of something}) = 0$$

- Conservation of mass (particles) ρ
- Conservation of momentum $\rho \bar{V}$
- Conservation of energy $\rho V^2/2 + B^2/(2\mu_0) + p/(\gamma - 1)$
- Conservation of the magnetic flux $\Phi = \int_S \bar{B} \cdot d\bar{S}$

Conservation of the magnetic flux

- Conservation of the **magnetic flux** $\Phi = \int_S \bar{B} \cdot d\bar{S}$ \rightarrow show $d\Phi/dt=0$

Conservation of the magnetic flux

- Conservation of the **magnetic flux** $\Phi = \int_S \bar{B} \cdot d\bar{S}$ \rightarrow find when $d\Phi/dt=0!$

$$\frac{d\Phi}{dt} = - \int_C \bar{E} \cdot d\bar{l} + \int_S \bar{B} \cdot (\bar{V} \times d\bar{l}) = - \int_C (\bar{E} + \bar{V} \times \bar{B}) \cdot d\bar{l}$$

Ideal Ohm's law $= 0$

- Magnetic flux through every surface moving with the plasma is constant
 \rightarrow **Frozen-in magnetic field in the absence of plasma resistivity!**

Conclusions: when do we use the MHD model?

- The MHD model of the plasma can be used to:
 - Find **magnetic field configurations** capable of confining a plasma in a defined volume for sufficiently long time scales → equilibrium
 - Analyse the **linear stability properties** of such a magnetic equilibrium: find if the equilibrium is stable or unstable to (small) perturbations
 - Analyse the **non-linear development** of macroscopic and microscopic instabilities and their ultimate consequences on the equilibrium itself

The Magnetohydrodynamic (MHD) description of the plasma

Outline

- MHD equations
- General application
 - Validity
 - Conservation properties
- **General formulation of the ideal MHD equilibrium**
- 1D configurations

Definition of the (static) MHD equilibrium

- Finding stable equilibria is one of the essential applications of the **ideal MHD** model
 - Eulerian definition of the **equilibrium**: $\partial/\partial t = 0$
- The simplest, yet very useful, stable MHD equilibria are the **static equilibria**, i.e. $\bar{V} = 0$
 - Dynamic MHD equilibria exist, but are more difficult to describe

Static ideal MHD equilibrium equations

- Use ideal MHD equations and set $\partial/\partial t = 0$ and $\bar{V} = 0$

- Continuity:

$$\cancel{\frac{\partial n(\bar{x}, t)}{\partial t} + \nabla \cdot (n(\bar{x}, t) \bar{V}(\bar{x}, t)) = 0}$$

- Momentum:

$$m_i n \left(\cancel{\frac{\partial \bar{V}(\bar{x}, t)}{\partial t} + \bar{V}(\bar{x}, t) (\nabla \bar{V}(\bar{x}, t))} \right) = \bar{j}(\bar{x}, t) \times \bar{B}(\bar{x}, t) - \nabla p(\bar{x}, t)$$

- Ampère's law:

$$\nabla \times \bar{B}(\bar{x}, t) = \mu_0 \bar{j}(\bar{x}, t)$$

- Gauss's law:

$$\nabla \cdot \bar{B}(\bar{x}, t) = 0$$

- Ideal Ohm's law:

$$\bar{E}(\bar{x}, t) + \cancel{\bar{V}(\bar{x}, t) \times \bar{B}(\bar{x}, t)} = 0$$

Static MHD equilibrium: isobaric surfaces

- Investigate momentum or force balance equation

$$\bar{J} \times \bar{B} = \nabla p$$

➤ Current and magnetic field lines lie on isobaric surfaces!

Static MHD equilibrium: flux surfaces

Isobaric surface: surface of constant pressure $p(\bar{x}, t)$

- $\bar{J}, \bar{B} \perp \nabla p \rightarrow p$ does not change along \bar{J} nor $\bar{B} \rightarrow \bar{j}(\bar{x}, t)$ and $\bar{B}(\bar{x}, t)$ lie on isobaric surfaces

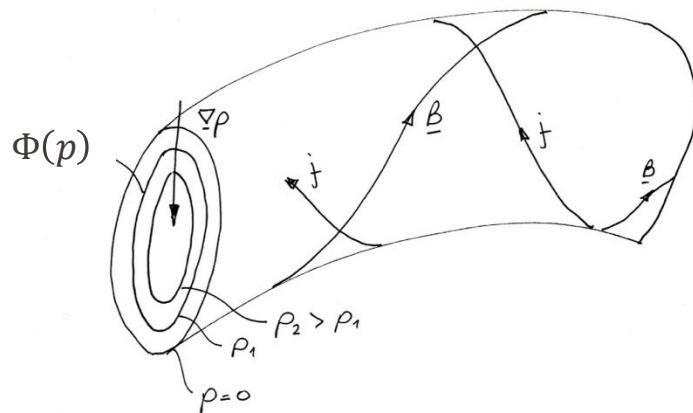
Flux surface

- $\nabla \bar{B} = 0$ implies that isobaric surfaces enclose constant magnetic flux $\Phi = f(p) \rightarrow$ **isobaric flux-surfaces**

Definition of flux tubes

- **Flux tube**: a *cylindrical* volume embedded in the plasma, its sides are defined by magnetic field lines
- **Frozen-in magnetic field in ideal MHD**: $d\Phi/dt = 0$

For any plasma displacement the **integrity of the flux-tubes is maintained**



- **Ideal MHD: magnetic field topology is maintained**
 - Field lines cannot break and “reconnect”

Static MHD equilibrium

MHD equilibrium: $\bar{J} \times \bar{B}$ force balances the ∇p -force

$$\bar{J} \times \bar{B} - \nabla p = 0$$

- Use Ampère's law

$$\begin{aligned} \frac{1}{\mu_0} (\nabla \times \bar{B}) \times \bar{B} - \nabla p &= 0 \\ \Rightarrow \nabla p + \nabla_{\perp} \left(\frac{B^2}{2\mu_0} \right) - \frac{B^2}{\mu_0} (\hat{e}_B \cdot \nabla) \hat{e}_B &= 0 \end{aligned}$$

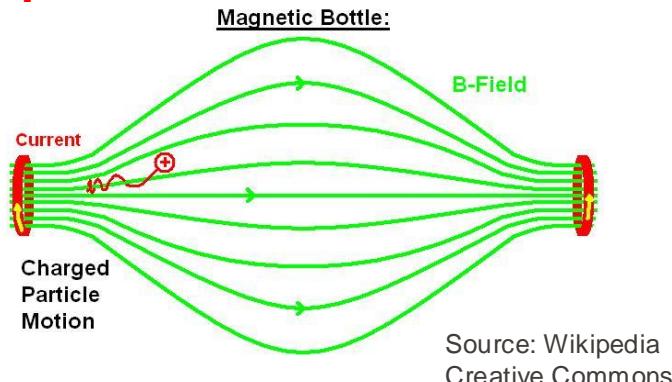
magnetic field tension of magnetic
pressure field lines

- Balance between the gradient in the plasma + magnetic field pressure and the tension of the magnetic field lines
 - Tension of the magnetic field lines $\propto B^2/(\mu_0 R_c)$: restoring force when magnetic field lines are bent with a curvature radius R_c

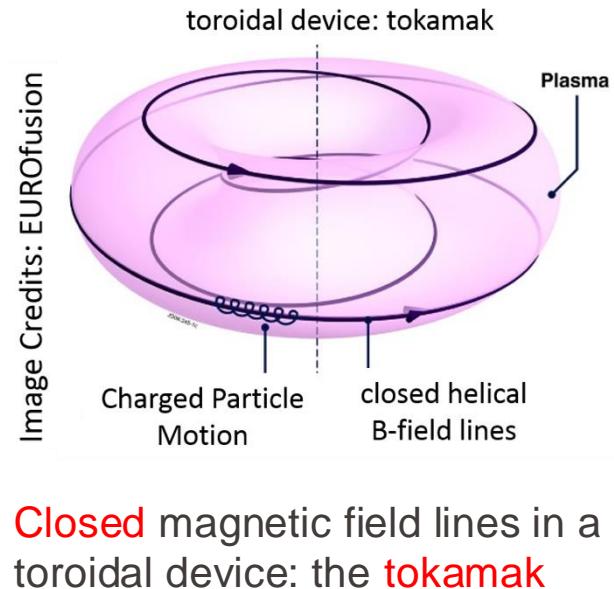
MHD equilibrium: field lines

- Two classes of MHD equilibria: field lines are **open** or **closed** inside the plasma volume being studied

Examples



- Open** magnetic field lines in a linear cylindrical device: the **magnetic bottle** (or magnetic mirror)



- Closed** magnetic field lines in a toroidal device: the **tokamak**

Closed field lines in a toroidal device

- A **toroidal device** (\equiv **torus**) is a cylinder with its ends folded-up
- **Torus**: two preferential directions defining possible symmetry axis:
 - The **toroidal** direction: the longitudinal axis of the *original* cylinder
 - The **poloidal** direction: defines the plane perpendicular to the longitudinal axis of the *original* cylinder
- Magnetic field lines can be closed in a toroidal device

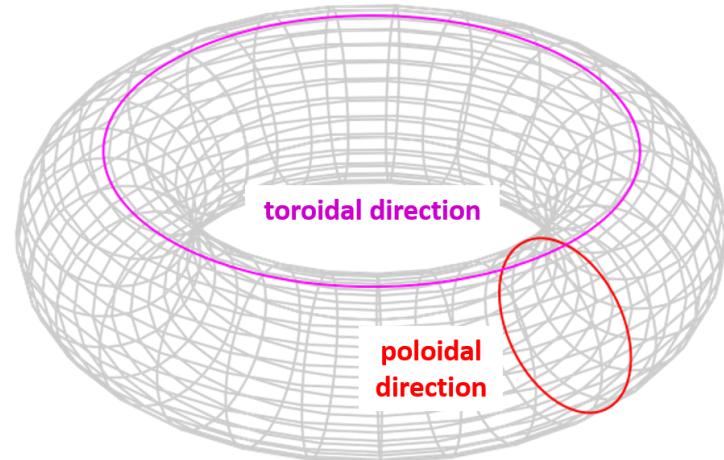


Image Credits: Wikipedia Creative Commons

MHD equilibrium: field lines & Poincaré theorem

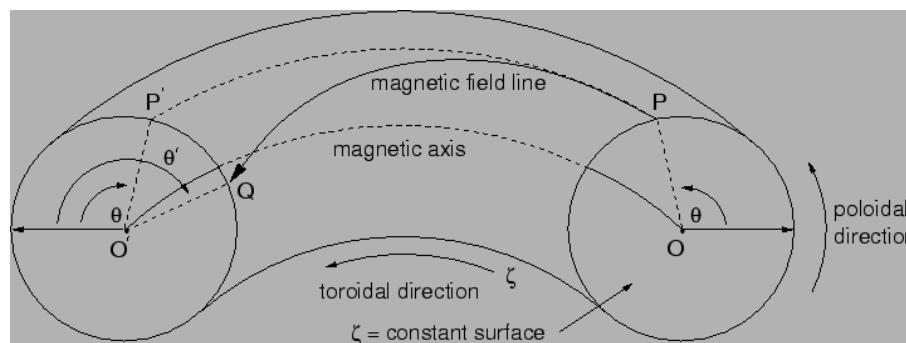
- Poincaré theorem (also sometimes known as the *hairy ball theorem*): the only smooth 2D surface on which field lines can be covered by a **non-vanishing** vector field is a **torus**

Flux surfaces must have the topology of a torus for the $\bar{J} \times \bar{B}$ force to balance the plasma pressure everywhere!

Vector field vanishes!

Closed field lines: rotational transform

- **Rotational transform ι :** the average value of $d\theta$ after one full transit in the toroidal direction



$$\iota = \lim_{l \rightarrow \infty} \frac{1}{l} \sum_{k=1}^l d\theta_k$$

$$= 2\pi \frac{n}{m} \quad \{n, m\} \in \mathbb{N}$$

- **Example:** if the field line closes itself after m toroidal transit and n of poloidal transits, then $\iota = 2\pi n/m$
- A perturbation can resonate with this natural periodicity of the magnetic equilibrium when $\iota = 2\pi z$ with $z \in \mathbb{Q}$

Closed field lines: rotational transform

- Rotational transform $\iota(r)$: characterises flux surfaces of MHD equilibria with a single number and helps the study of MHD stability
 - Mostly used for non-axisymmetric 3D magnetic configurations → stellarators
- Related to safety factor $q(r)=2\pi/\iota(r)$
 - Mostly used for axisymmetric 2D magnetic configurations → tokamaks

Static ideal MHD equilibrium: summary

- Static ideal MHD equilibrium: $\bar{V}(\bar{x}, t) = 0$
- The $\bar{J} \times \bar{B}$ force must balance the outward-directed ∇p -force
- **Isobaric flux-surfaces**: surfaces of constant pressure and magnetic flux, field lines tangent to them
- Closed field lines: characterized by the rotational transform

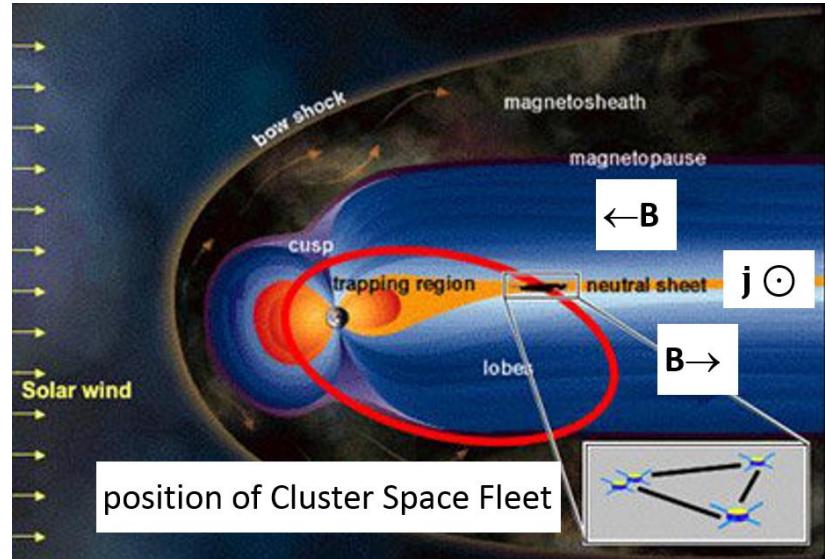
The Magnetohydrodynamic (MHD) description of the plasma

Outline

- MHD equations
- General application
 - Validity
 - Conservation properties
- General formulation of the ideal MHD equilibrium
- **The ideal MHD equilibrium in 1D configurations**
 - The Harris neutral sheet in the Earth's magneto-tail
 - One of the earliest fusion experiments: the Z-pinch
 - One of the earliest fusion experiments: the θ -pinch

The Harris neutral sheet: a 1D MHD equilibrium

- **Harris neutral sheet:** on the night-side of the Earth's magneto-sphere
 - Probed in recent years by the ESA Cluster and NASA Themis missions
 - Cross-field flow of current due to the solar wind: the direction of the magnetic field reverses as the mid-plane is crossed
 - The Harris neutral sheet corresponds to the reconnection layer, where the magnetic field reversal occurs



The Harris neutral sheet: a 1D MHD equilibrium

- **Harris neutral sheet**

- Symmetries: $\bar{B} = (B_x(z), 0, 0)$
 $\bar{J} = (0, j_y(z), 0)$

➔ $\partial/\partial x = 0$ and $\partial/\partial y = 0$

Ampère

$$\nabla \times \bar{B} = \mu_0 \bar{J} \rightarrow \frac{dB_x(z)}{dz} = \mu_0 j_y(z)$$

Force balance

$$\bar{J} \times \bar{B} - \nabla p = 0 \rightarrow -B_x(z)j_y(z) - \frac{dp(z)}{dz} = 0 \quad \left. \right\} \frac{d}{dz} \left(\frac{B_x^2(z)}{2\mu_0} + p(z) \right) = 0$$

- The sum of the magnetic and the plasma pressure is constant in the Harris neutral sheet

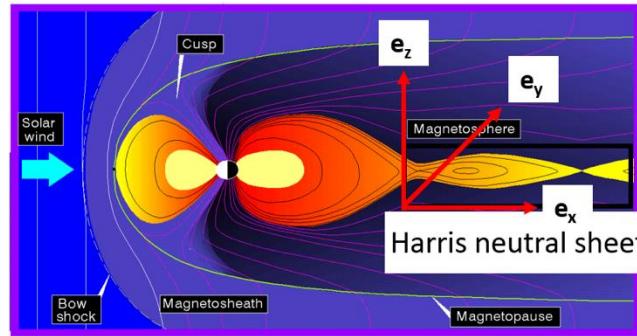


Image Credits:
NASA public domain

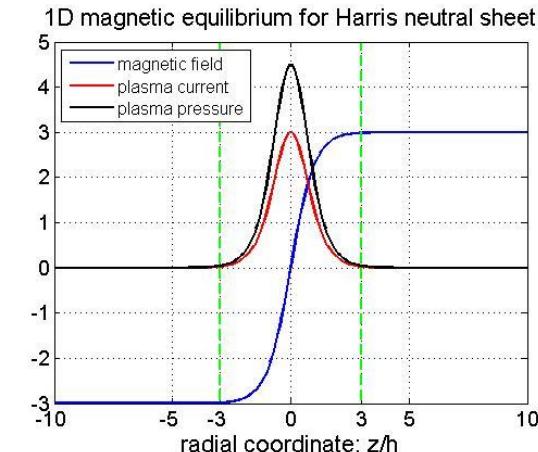
The Harris neutral sheet: a 1D MHD equilibrium

- General solution for the equilibrium of the Harris neutral sheet

$$B_x(z) = B_0 \tanh(z/h)$$

$$\left. \begin{array}{l} p(z) = \frac{B_0^2}{2\mu_0} \operatorname{sech}^2\left(\frac{z}{h}\right) \\ j_y(z) = j_0 \operatorname{sech}^2\left(\frac{z}{h}\right) \end{array} \right\}$$

- Derived by E.G. Harris in 1962
- Confirmed by measurements in the Earth's magneto-tail



The magnetic pinch: a 1D MHD equilibrium

- **Magnetic pinch:** 1D cylindrical (linear) configuration
- All equilibrium quantities depend only on the radial coordinate $r \rightarrow$ use cylindrical coordinates (e_r, e_θ, e_z) with $\partial/\partial z=0$ and $\partial/\partial\theta=0$
- Three varieties of magnetic pinches exist:
 - the **Z-pinch**
 - the **θ -pinch**
 - the **screw-pinch**

The Z-pinch: a 1D MHD equilibrium

- **Z-pinch:** configuration that achieves plasma confinement using a poloidal magnetic field $B_\theta(r)$ and a ‘toroidal’ current $j_z(r)$

$$\left. \begin{array}{l} \bar{B} = (0, B_\theta(r), 0) \\ \bar{J} = (0, 0, j_z(r)) \end{array} \right\}$$

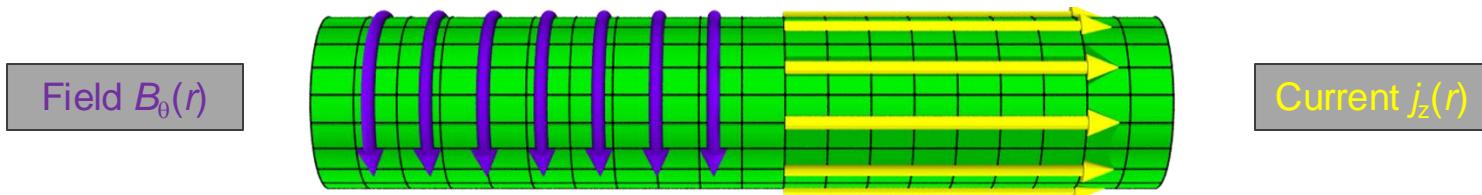
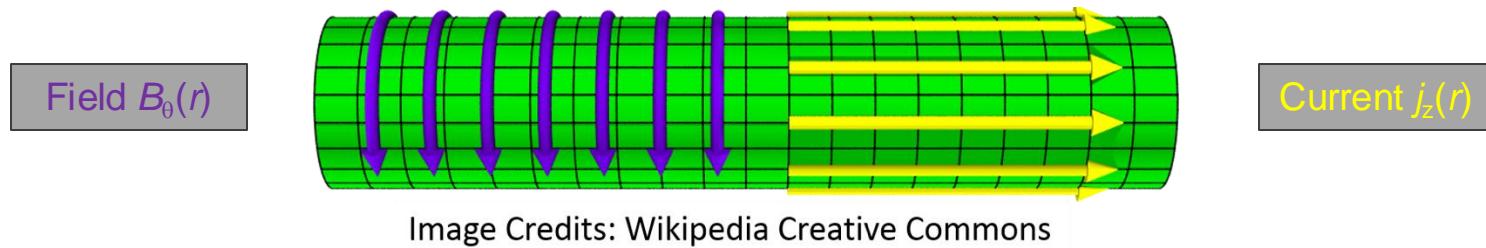


Image Credits: Wikipedia Creative Commons

- See exercise 1 for Z-pinch equilibrium

The Z-pinch: a 1D MHD equilibrium



- Z-pinch equilibrium

$$\frac{d}{dr} \left[p(r) + \frac{B_\theta^2(r)}{2\mu_0} \right] + \frac{B_\theta^2(r)}{\mu_0 r} = 0$$

- The outward net force provided by the radial gradient of the plasma kinetic + magnetic pressure is balanced by the **inward tension** due to the curvature of the magnetic field lines being wrapped over the surface of the Z-pinch
 - Tension of the magnetic field lines $\propto B^2/(\mu_0 r)$: restoring force when magnetic field lines are bent with a curvature radius r

The θ -pinch: a 1D MHD equilibrium

- **θ -pinch:** configuration that achieves plasma confinement using a toroidal magnetic field $B_z(r)$ and a poloidal current $j_\theta(r)$

$$\left. \begin{array}{l} \bar{B} = (0, 0, B_z(r)) \\ \bar{J} = (0, j_\theta(r), 0) \end{array} \right\}$$

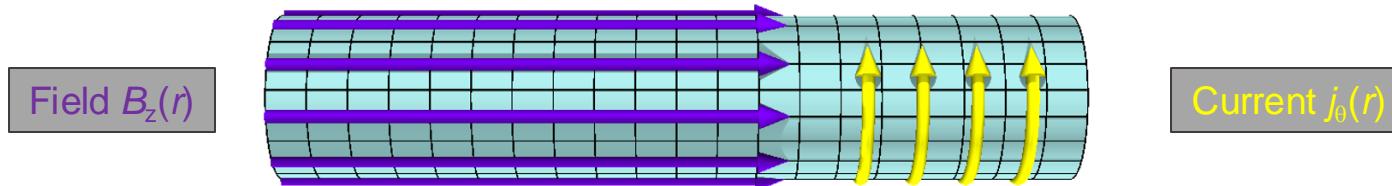


Image Credits: Wikipedia Creative Commons

Ampere's law:

$$\mu_0 \bar{J} = \nabla \times \bar{B} \quad \Rightarrow \quad \mu_0 j_\theta(r) = -\frac{dB_z(r)}{dr}$$

Ideal MHD force balance

$$\bar{J} \times \bar{B} - \nabla p = 0 \quad \Rightarrow \quad j_\theta(r) B_z(r) - \frac{dp(r)}{dr} = 0$$

Substitute j_θ

$$\Rightarrow \quad \frac{1}{\mu_0} \frac{dB_z(r)}{dr} B_z(r) + \frac{dp(r)}{dr} = 0$$

$$\Leftrightarrow \quad \frac{d}{dr} \left(\frac{B_z^2(r)}{2\mu_0} + p(r) \right) = 0 \quad \Rightarrow \quad$$

$$\boxed{\frac{B_z^2(r)}{2\mu_0} + p(r) = \text{const.} = \frac{B_z^2(a)}{2\mu_0}}$$

The θ -pinch: a 1D MHD equilibrium

■ θ -pinch equilibrium

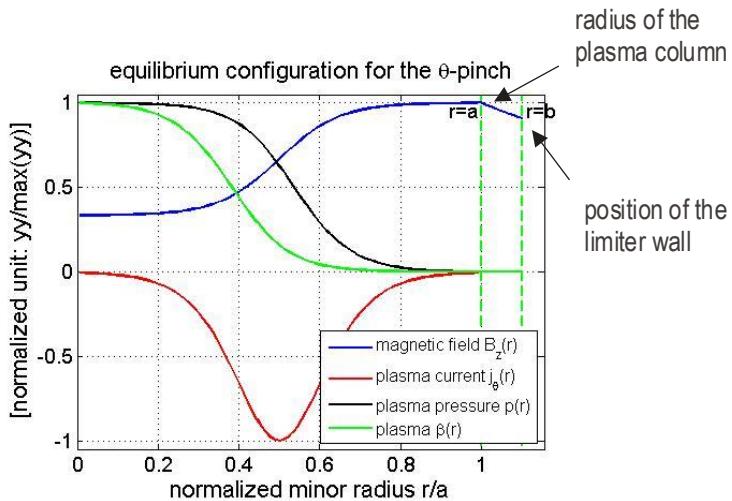
- Plasma kinetic pressure is balanced by magnetic field pressure
- Analytic solution obtained by prescribing the toroidal field

$$B_z(r) = \begin{cases} B_0 \left[2 + \tanh\left(\frac{2r-a}{h}\right) \right] & \text{for } r < a \\ B_z(r=a) \frac{a}{r} & \text{for } a < r < b \end{cases}$$

with
$$p(r) = \frac{B_z^2(a) - B_z^2(r)}{2\mu_0}$$

$$p(r) = \frac{B_0^2(a)}{2\mu_0} \left\{ \left[2 + \tanh\left(\frac{a}{h}\right) \right]^2 - \left[2 + \tanh\left(\frac{2r-a}{h}\right) \right]^2 \right\}$$

$$\frac{B_z^2(r)}{2\mu_0} + p(r) = \frac{B_z^2(a)}{2\mu_0}$$



and
$$j_\theta(r) = -\frac{B_0}{h\mu_0} \operatorname{sech}^2\left(\frac{2r-a}{h}\right)$$

The screw-pinch: a 1D MHD equilibrium

- **Screw-pinch:** combines the Z-pinch and the θ -pinch, also known as the **linear tokamak**

$$\left\{ \begin{array}{l} \bar{B} = (0, B_\theta(r), B_z(r)) \\ \bar{j} = (0, j_\theta(r), j_z(r)) \end{array} \right.$$

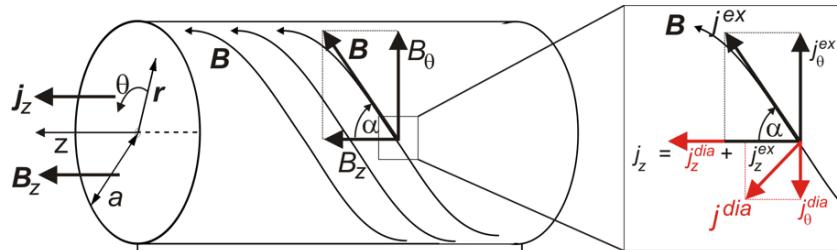


Image Credits: Wikipedia Creative Commons

- See exercise 2 for screw-pinch equilibrium

$$\frac{d}{dr} \left(p + \frac{B_z^2 + B_\theta^2}{2\mu_0} \right) + \frac{B_\theta^2}{\mu_0 r} = 0$$

Applications of the 1D MHD equilibrium: summary

- **Harris sheet** $\{j_y(z), B_x(z)\} \rightarrow$ magnetic pressure

$$\frac{d}{dz} \left(p(z) + \frac{B_x^2(z)}{2\mu_0} \right) = 0$$

- **Z-pinch** $\{j_z(r), B_\theta(r)\}, \rightarrow$ magnetic pressure + magnetic field lines tension

$$\frac{d}{dr} \left(p(r) + \frac{B_\theta^2(r)}{2\mu_0} \right) + \frac{B_\theta^2(r)}{\mu_0 r} = 0$$

- **θ -pinch** $\{j_\theta(r), B_z(r)\} \rightarrow$ magnetic pressure

$$\frac{d}{dr} \left(p(r) + \frac{B_z^2(r)}{2\mu_0} \right) = 0$$

- **Screw-pinch** $\{j_\theta(r), j_z(r), B_\theta(r), B_z(r)\} \rightarrow$ combines Z-pinch and θ -pinch

$$\frac{d}{dr} \left(p(r) + \frac{B_z^2(r) + B_\theta^2(r)}{2\mu_0} \right) + \frac{B_\theta^2(r)}{\mu_0 r} = 0$$

Re-cap: The Magnetohydrodynamic (MHD) description of the plasma

- MHD equations: concept, derivation, (limits of validity), applications
- General MHD equilibrium:
 - Based on ideal MHD force balance (Ampere's law links \bar{j} and \bar{B})
 - Field lines wind around a torus
 - Field lines form flux surfaces characterised by a rotational transform
- MHD equilibrium: several examples of one-dimensional equilibria (require two symmetries, e.g. magnetic pinches with $\partial/\partial z=0$ and $\partial/\partial \theta=0$)